首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   8篇
测绘学   9篇
大气科学   1篇
地球物理   29篇
地质学   12篇
海洋学   3篇
自然地理   9篇
  2022年   2篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2017年   5篇
  2016年   10篇
  2015年   8篇
  2014年   5篇
  2013年   5篇
  2012年   5篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2003年   3篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
排序方式: 共有63条查询结果,搜索用时 16 毫秒
1.
Establishing a universal watershed‐scale erosion and sediment yield prediction model represents a frontier field in erosion and soil/water conservation. The research presented here was conducted on the Chabagou watershed, which is located in the first sub‐region of the hill‐gully area of the Loess Plateau, China. A back‐propagation artificial neural model for watershed‐scale erosion and sediment yield was established, with the accuracy of the model, then compared with that of multiple linear regression. The sensitivity degree of various factors to erosion and sediment yield was quantitatively analysed using the default factor test. On the basis of the sensitive factors and the fractal information dimension, the piecewise prediction model for erosion and sediment yield of individual rainfall events was established and further verified. The results revealed the back‐propagation artificial neural network model to perform better than the multiple linear regression model in terms of predicting the erosion modulus, with the former able to effectively characterize dynamic changes in sediment yield under comprehensive factor conditions. The sensitivity of runoff erosion power and runoff depth to the erosion and sediment yield associated with individual rainfall events was found to be related to the complexity of surface topography. The characteristics of such a hydrological response are thus closely related to topography. When the fractal information dimension is greater than the topographic threshold, the accuracy of prediction using runoff erosion power is higher than that of using runoff depth. In contrast, when the fractal information dimension is smaller than the topographic threshold, the accuracy of prediction using runoff depth is higher than that of using runoff erosion power. The developed piecewise prediction model for watershed‐scale erosion and sediment yield of individual rainfall events, which introduces runoff erosion power and runoff depth using the fractal information dimension as a boundary, can be considered feasible and reliable and has a high prediction accuracy. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
2.
地形是影响土壤侵蚀的重要因子, 分布式土壤侵蚀学坡长是地形因子的重要参数。坡长与土壤侵蚀过程相适应, 在一定条件下停止累计而截断。坡度变化是坡长提取的截断条件之一, 但坡度变化对提取结果的影响研究还不够深入。以数学曲面和黄土高原县南沟流域的数字高程模型作为数据源, 使用LS_TOOL方法提取坡长, 并对坡度变化引起的坡长截断结果进行对比和主成分分析。结果表明, 下坡坡度减小幅度越大, 坡度截断效果越明显; 坡度小于2.86°的截断参数R1和坡度大于或等于2.86°的截断参数R2与坡长最大值和坡长平均值均正相关; 在黄土高原地区, 陡坡、沟道较多, 相对R2的影响, R1对坡长的影响较小。坡度变化的截断设置在R1>0.7, R2>0.5时, 坡长变化较明显, 建议黄土高原地区侵蚀坡长的坡度截断设置值为R1=0.7, R2=0.5。  相似文献   
3.
The origin of perylene, a five-ring polycyclic aromatic hydrocarbon (PAH), in sediments has been a matter of constant debate and its formation mechanisms remain unclear. A perylene record in sediment was described and could support a clear link between perylene and terrigenous organic matter (OM) input. The distributions of PAHs, the variations of organic proxies such as the ratio of terrigenous to aquatic n-alkanes (TAR(HC)) and 5α(H)-stanols/Δ5-sterols ratio in sediments have been investigated. Sediments were sampled from a pond artificially created during the Middle Ages from a swampy area. In the period prior to the pond creation, for which high contributions of terrigenous OM were evidenced, perylene was found to be the predominant PAH. Furthermore, perylene content was shown to increase in response to the establishment of more reducing conditions. This result supports the common idea that the main source of perylene is natural and derives from biogenic precursors under reducing conditions. The creation of the pond in this wetland is marked by the deposition of a wood rich level characterized both by more oxygenated conditions and higher concentrations of perylene. These high concentrations could result from the introduction of high concentrations of biogenic precursors of perylene under oxidative conditions. Subsequently, the progressive burial of the woody level could have allowed the establishment of oxygen depleted conditions and the formation of perylene. These results validate the use of perylene as a paleoenvironmental marker of terrigenous sources but it must be carefully used as a marker for syn- or post-depositional oxygen depleted conditions in lacustrine environments.  相似文献   
4.
Understanding the mechanisms that underlie habitat loss is fundamental to nature conservation. Habitat loss and its related factors are location dependent, but their spatial variations across geographical space are poorly understood. This research attempts to explore the spatio-temporal variations of human and biophysical factors of habitat loss in the Shenzhen River watershed, a border region shared by the Hong Kong Special Administrative Region (SAR) and Shenzhen in China. Habitat loss was quantified through the comparison of historical land cover maps in 1988/1998/2008, derived from the Landsat imagery. The different degree of habitat loss is further considered by referring to loss of ecosystem services during habitat alteration or destruction processes. In order to examine how influencing factors change with space, the model of geographically weighted regression (GWR) was employed. The GWR model was proved to be effective in revealing a spatially varying relationship, and has better performance compared with the global regression model. The results also provided the detailed site information of the different roles of the related factors across the different locations. Various factors, especially the human-related ones, played a significant role in determining both the “rate” and “location” of habitat loss, and the influences also varied during the entire study period. These results could provide comprehensive information for future habitat conservation and cross-border watershed management.  相似文献   
5.
6.
地震作用下高斜坡破坏的发生发展过程比较短暂、剧烈,破坏机理相对复杂。本文采用模型试验的方法来研究地震作用下非贯通节理岩体斜坡的反应。试验结果表明:节理上的应变最大,模型上部应变大于下部应变;节理贯通机理复杂,多为拉剪复合型破坏;节理的贯通并不意味着斜坡的破坏,而是破坏了斜坡的整体性,使其处于临界状态。试验揭示了此类斜坡在地震作用下的动力响应及破坏机理,可为理论和工程实践应用提供有益的参考和指导。  相似文献   
7.
道路侵蚀研究进展   总被引:7,自引:0,他引:7  
道路建设的加速会引发道路侵蚀的加剧, 继而对生态环境产生很大的压力, 为了减轻或控 制道路侵蚀, 必须了解道路侵蚀的特征, 找出有效的防治措施。道路建设是对当地地形的改造, 开 挖以及填埋等扰动活动, 会在原来地貌上形成不同的微地形, 它们各有特点, 形成不同的侵蚀特 征。不同的道路部位侵蚀机理和侵蚀过程差别很大, 现有研究对各个部位的侵蚀强度进行了比 较, 但结果并不一致。与其他用地相比, 道路用地显著的改变了土壤的物理水文性质, 加速了产流 产沙过程。尤其对一个流域而言, 道路的线性特征使其成为汇流引流的重要途径, 直接影响着流 域的行洪泄洪, 而在这方面的研究较少。道路侵蚀预报仍然集中在经验统计模型的研究上, 由于 经验模型固有的弊端, 不能明确反映侵蚀的机理, 物理模型的研究更加迫切, 尤其结合已有的农 地侵蚀的过程模型更是加强的重点。道路侵蚀的防治措施主要包括工程措施, 生物措施以及两者 的组合, 其水保效益都比较明显, 但也往往受到当地自然环境和经济条件的限制。本文总结了国 内外道路侵蚀研究成果, 结合存在的问题指出了今后加强研究的重点, 对理解道路侵蚀机理, 开 展道路侵蚀防治具有一定的指导意义。  相似文献   
8.
It is of great significance to analyze the long time-series spatiotemporal dynamics of water use efficiency (WUE) to formulating appropriate management measures in response to the growing water scarcity in arid and semi-arid regions. This study analyzed the long time-series variations of WUE in the Lower Heihe River Basin, a typical arid and semi-arid region in China. The net primary productivity (NPP) was first estimated with the C-fix model, then WUE during 2001–2010 was calculated with the NPP and evapotranspiration (ET) data, and the accumulative WUE was further calculated. The results showed that the annual NPP and WUE in the study area ranged from zero to 448.70 gC/(m2 a) and from zero to 2.20 gC kg−1 H2O, respectively, both of which showed an overall increasing trend during 2001–2010. Besides, the spatial pattern of WUE kept overall unchanged during 2001–2010, but with remarkable change in some part of the study area. In addition, the accumulative WUE of the whole study area showed a first sharply decreasing and then gradually increasing trend, but there was still some scope to improve the WUE, and it is necessary to carry out some more specific policies to further improve the water allocation and WUE within the Lower Heihe River Basin. Although with some uncertainties, these results still can provide valuable reference information for improving the water resource management and ecological conservation to guarantee provision of essential ecosystem services in arid and semi-arid regions.  相似文献   
9.
Soil–water characteristics are necessary for water quality monitoring, solute migration and plant growth. Soil–water characteristic curve (SWCC) is a relationship between suction and water content or degree of saturation. However, little information is available concerning the impacts of grazing exclusion management on soil–water characteristics. Here, the soil–water characteristics of grasslands, which were excluded grazing for 5 (GE5) and 15 years (GE15), were studied. The saturated hydraulic conductivity (K s), SWCC, particle composition, field capacity and some other indexes were determined. Results showed that the clay content and K s of grassland soil were higher for GE15 than GE5. For both treatments, in low suction condition (≤100 kPa), the water holding capacity of 0–10 cm soil was the best. Water holding capacity of topsoil decreased gradually with the increasing of suction, and it reached the strongest when the suction reached 600 kPa. In all soil water suction, the water holding capacity of subsoil was the weakest. The van Genuchten expression was applicable for most of the samples, except 20–30 cm of GE5 and 10–20 cm of GE15. Dual porosity equation was applicable for all the samples. The soil–water capability and soil structure of which was fenced for 15 years is superior to that of 5 years. This study suggests that the enclosure management improved the soil structure and soil–water capability.  相似文献   
10.
Assessment of human health impact caused by air pollution is crucial for evaluating environmental hazards. In this paper, concentrations of six air pollutants (PM10, PM2.5, NO2, SO2, O3, and CO) were first derived from satellite observations, and then the overall human health risks in China caused by multiple air pollutants were assessed using an aggregated health risks index. Unlike traditional approach for human health risks assessment, which relied on the in-situ air pollution measurements, the spatial distribution of aggregated human health risks in China were obtained using satellite observations in this research. It was indicated that the remote sensing data have advantages over in-situ data in accessing human health impact caused by air pollution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号